MDM2 Antagonists Counteract Drug-Induced DNA Damage
نویسندگان
چکیده
Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.
منابع مشابه
DNA damage-induced activation of ATM promotes β-TRCP-mediated Mdm2 ubiquitination and destruction
The Mdm2 oncoprotein promotes p53 ubiquitination and destruction. Yet, exact molecular mechanisms of Mdm2 destruction itself, under DNA damaging conditions, remain unclear. Recently, we identified SCFβ-TRCP as a novel E3 ligase that targets Mdm2 for ubiquitination and destruction in a Casein Kinase Iδ (CKIδ)-dependent manner. However, it remains elusive how the β-TRCP/CKIδ/Mdm2 signaling axis i...
متن کاملPhosphorylation of Daxx by ATM Contributes to DNA Damage-Induced p53 Activation
p53 plays a central role in tumor suppression. It does so by inducing anti-proliferative processes as a response to various tumor-promoting stresses. p53 is regulated by the ubiquitin ligase Mdm2. The optimal function of Mdm2 requires Daxx, which stabilizes Mdm2 through the deubiquitinase Hausp/USP7 and also directly promotes Mdm2's ubiquitin ligase activity towards p53. The Daxx-Mdm2 interacti...
متن کاملNongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma.
Mutation of p53 is a rare event in multiple myeloma, but it is unknown if p53 signaling is functional in myeloma cells, and if targeted nongenotoxic activation of the p53 pathway is sufficient to kill tumor cells. Here, we demonstrate that treatment of primary tumor samples with a small-molecule inhibitor of the p53-murine double minute 2 (MDM2) interaction increases the level of p53 and induce...
متن کاملPhospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53.
Phospholipase D (PLD) has been reported to generate survival signals that prevent apoptosis induced by serum withdrawal. We have now found that elevated expression of PLD also suppresses DNA damage-induced apoptosis. Since DNA damage-induced apoptosis is often mediated by p53, we examined the effect of elevated PLD expression on the regulation of p53 stabilization. We report here that PLD suppr...
متن کاملAciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dep...
متن کامل